

ВЛИЯНИЕ ПРОИЗВОДИТЕЛЕЙ НА ФИЗИКО-ХИМИЧЕСКИЕ И ТЕХНОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ МОЛОКА КОЗ ЗААНЕНСКОЙ ПОРОДЫ

А.С. Шувариков, Ю.Н. Бодрова, О.Н. Пастух РГАУ – МСХА имени К.А. Тимирязева

Аннотация: в статье рассмотрены физико-химические и технологические свойства молока зааненских коз, происходящих от разных козлов-производителей.

Ключевые слова: белок, лактоза, жирномолочность, плотность, кислотность молока, сыр-Брынза, сыр-Шевре.

Оценка влияния производителей на физико-химические показатели и технологические свойства козьего молока при выработке различных видов сыров, имеет большой научный и практический интерес, что и явилось целью наших исследований.

Опыт проводили в 2007-2010 гг. на базе ООО «Ферма Надежда», расположенной в деревне Цапушево, Торжокского района, Тверской области. Это хозяйство уже 20 лет занимается разведением чистопородных коз зааненской породы.

На ферме 120 дойных коз, 56 голов молодняка и 7 производителей; имеется молочная лаборатория, перерабатывающий молочный цех, помещение и оборудование (специализированная сырная ванна и пресс) для выработки сыров и упаковки продукции. Хозяйство занимается переработкой собственного молока-сырья в пастеризованное питьевое цельное молоко и уже десять лет поставляет его в торговые сети г. Москвы и Тверской области. Из козьего молока вырабатывается мягкий сыр Шевре, один из самых популярных козьих сыров Франции, и сычужный фермерский сыр типа Брынзы.

В ассортимент товарной продукции фермы в настоящее время входят не только пастеризованное козье молоко и сыры, но и племенной молодняк различных возрастных групп, который

свободно продается в различные хозяйства.

Для эксперимента было отобрано 4 группы коз 1-ой лактации, в количестве 32 голов (по 8 голов в группе) имеющих разных отцов-производителей. Во время опыта все животные находились в одинаковых условиях кормления и содержания. На протяжении года два раза в месяц проводились контрольные дойки каждого животного опытной группы.

Из молока коз каждой из 4-х групп вырабатывались сыры Шевре и сычужный фермерский типа Брынзы.

Анализ молока и сыров проводился в соответствии со стандартными методиками. Витамины, аминокислотный состав и минеральные вещества определяли в лаборатории технохимического контроля Всероссийского научноисследовательского института молочной промышленности.

Достоверность разности изучаемых показателей определяли у животных разного происхождения каждой опытной группы коз в сравнении со средней величиной животных трех групп с обозначения уровней вероятности: *-P < 0.5; **-P < 0.01; ***-P < 0.001.

Физико-химические показатели исследуемого молока коз колебались в пределах: жир 3,4-3,6%, белок 3,18-3,23%,сухое вещество 11,6-11,8%, лактоза 4,19-4,37% (табл. 1).

Таблица 1 Физико-химические показатели молока коз разного происхождения

Поморожати	Кличка отцов коз				
Показатель	Лис Р-20	Рэм N-24	Фэт Q67	Крокус Q-17	
В молоке содержится, %:					
жир	$3,42\pm0,20$	$3,65\pm0,20$	3,51±0,10	3,67±0,30	
белок	$3,21\pm0,02$	$3,18\pm0,03$	$3,23\pm0,03$	3,23±0,01	
лактоза	4,37±0,02	4,31±0,04	4,19±0,04**	4,33±0,03	
сухое вещество	11,68±0,09	11,60±0,15	11,80±0,14	11,69±0,11	
COMO	8,26±0,10	7,95±0,80	8,30±0,05	8,00±0,03	
минеральные вещества	0,65±0,01	$0,64\pm0,01$	0,65±0,01	0,64±0,01	
Температура					
замерзания, ⁰ С	0,501±0,01	0,491±0,01	$0,497\pm0,01$	0,485±0,01	
Плотность молока, кг/м ³	1027,8±0,95	1027,6±0,81	1027,8±0,43	1027,7±0,15	
Кислотность, ^о Т	$16,9 \pm 0,40$	15,8±0,60	17,6±0,40	16,9±0,40	
Содержание, мг/100 г:					
витамина С	1,53±0,03	1,51±0,90	1,51±0,10	1,58±0,10	
витамина А	-0,033±0,001	-0,033±0,010	-0,042±0,001	-0,039±0,002	
Содержание незамени-					
мых аминокислот	1297,50	1264,70	1213,70	1237,90	
мг/100г,	258,70	240,30	233,30	242,90	
в том числе: лизин	42,50	44,60	42,50	39,10	
триптофан	74,00	71,90	66,30	73,70	
метионин					
Калорийность молока,					
КДж	2628,55	2702,54	2636,12	2722,31	
Ккал/кг	628,84	646,54	630,65	651,27	

Установленные различия между группами животных в содержании основных компонентов молока были не достоверны, за исключением более низкого содержания лактозы у дочерей Фэта Q-67 относительно показателей других коз.

Все подопытные животные превосходили американский стандарт для зааненской породы коз по жирномолочности (3,4%) и белковомолочности (3,1%), однако по этим и другим показателям молоко коз не соответствует требованиям «Технического Регламента» Российской Федерации на молоко и молочную продукцию, в котором для козьего молока установлено: содержание жира — 4,1-4,3%, белка — 3,6-3,8%, сухого вещества — 13,4%, лактозы- 4,4-4,6%.

Содержание незаменимых аминокислот в козьем молоке опытных

групп колебалось в пределах 1213,7-1297,5 мг/100г. Эти результаты не соответствуют данным справочника «Химический состав пищевых продуктов» (1295,0 мг/100г), за исключением группы коз-дочерей Лиса Р-20 (1297,5 мг/100г).

Технологические свойства молока коз оценивали при выработке сыров: мягкого сыра Шевре и сычужного сыра типа Брынзы.

На производство 1 кг сыров – Брынзы и Шевре (рис.1) самый наименьший расход молока (в среднем 5,2 л) на оба вида сыра был у коз – дочерей группы Лиса P-20. На втором месте по этому показателю (5,45 л) были дочери Рэма N-24, на третьем (5,75 л) – дочери Фэта Q-67 и на последнем месте $(5,9\pi)$ – животные группы Крокуса Q-17.

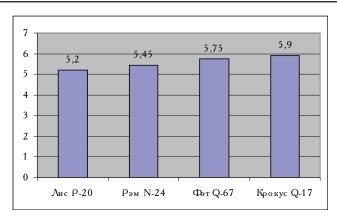


Рис.1. Расход молока коз разного происхождения на 1 кг сыра

Сыры Шевре и Брынза, полученные из молока коз разного происхождения не имели существенных различий по основным физико-химическим показателям (сухое вещество, жир, белок

в сухом веществе, аминокислотному составу незаменимым аминокислотам), калорийности и органолептическим свойствам (табл.2).

Таблица 2
Физико-химические показатели сыров из молока коз разного происхождения

	1	-			
Показатель	Название	Кличка отцов коз			
TTORASATESIB	сыра	Лис Р-20	Рэм N-24	Фэт Q-67	Крокус Q-17
Содержание в сыре, %:	Брынза	52,5±7,4	51,5±7,7	48,5±6,4	49,5±7,7
влага	Шевре	57,3±7,0	57,5±5,5	56,9±5,7	57,9±7,2
сухое вещество	Брынза	47,5±5,5	48,5±6,5	51,5±7,0	50,5±1,9
	Шевре	42,7±0,2	42,5±0,3	43,1±0,1	42,1±0,2
жир	Брынза	17,6±2,7	18,4±2,9	21,5±2,1	19,9±1,9
	Шевре	15,7±2,6	18,4±3,9	18,3±3,7	16,4±3,7
белок	Брынза	18,0±2,9	17,3±1,7	16,3±3,5	16,1±2,5
	Шевре	10,5±1,1	10,7±1,1	10,7±1,3	10,2±1,7
Жир в сухом	Брынза	37,5±3,0	38,4±3,1	37,2±2,9	34,6±2,2
веществе сыра, %	Шевре	37,0±2,9	42,9±4,9	42,3±5,5	38,4±2,9
Белок в сухом веществе сыра, %	Брынза	37,9±1,1	35,7±1,2	31,7±1,5	31,9±1,4
	Шевре	24,6±1,7	25,2±1,4	24,8±1,2	24,2±1,6
Незаменимые	Брынза	8067	8108	8187	8082
аминокислоты мг/100 г	Шевре	7639	7648	7678	7583
в том числе: лизин	Брынза	1395	1355	1338	1355
	Шевре	1269	1226	1240	1264
триптофан	Брынза	910	910	906	924
	Шевре	867	845	825	855
метионин	Брынза	724	714	708	695
	Шевре	643	641	626	640
Кислотность, ⁰ Т	Брынза	67±23,5	67,3±27,6	43,8±24,5	67,0±26,4
	Шевре	125,0±26	115,8±19,0	116,0±17,3	119,5±2,5
Калорийность сыра, ккал /100г	Брынза	237,5	242	267	252
	Шевре	189,1	215	214	194

7

По органолептической оценке, результаты которой представлены в таблице 3, сыры Шевре и Брынза, выработанные из молока коз разного происхождения имели хорошие вкусовые

качества. Наряду с этим следует отметить то, что органолептические показатели сыров обоих видов, произведённых из молока коз, происходящих от Рэма N-24, имели наивысшую оценку.

Органолептическая оценка сыров

Таблица 3

Показатель	Баллы	Клички отцов коз				
	Баллы	Лис Р-20	Рэм N-24	Фэт Q-67	Крокус Q-17	
Сыр Брынза						
Вкус и запах	10	8,5±0,3	9,1±0,4	8,3±0,5	8,4±0,2	
Консистенция	5	4,3±0,2	4,2±0,3	4,5±0,2	4,5±0,1	
Рисунок	5	4,6±0,1	4,6±0,1	4,4±0,2	4,4±0,1	
Цвет теста	5	4,8±0,1	4,9±0,1	4,7±0,1	4,8±0,1	
Общая оценка	25	22,2±0,2	22, 8±0,2	21,9±0,3	22,0±0,11	
Сыр Шевре						
Вкус и запах	10	7,5±0,7	8,5±0,6	8,0±0,5	8,1±0,4	
Консистенция	5	4,7±0,2	4,8±0,1	4,6±0,1	4,4±0,2	
Цвет теста	5	4,7±0,1	4,9±0,1	4,7±0,1	4,7±0,1	
Общая оценка	20	16,9±0,4	18,2±0,3	17,3±0,4	17,2±0,3	

Расчёт экономической эффективности производства молочных продуктов из козьего молока показал (табл. 4), что прибыль от реализации продукции, полученной за лактацию от одной козы высокопродуктивной группы Рэма N-24 была наибольшей и значительно

превышала прибыль от реализации продуктов, полученных от менее продуктивной группы животных – дочерей Крокуса Q-17: по питьевому молоку – на 19358 руб., по Брынзе – на 34880 руб., по Шевре – на 28385 руб.

Таблица 4
Экономическая эффективность переработки молока коз
разного происхождения

	Группы коз			
Показатель	Лис Р-20	Рэм N-24	Фэт Q-67	Крокус Q-17
Удой за лактацию, л	619,0	824,6	643,3	531,3
Расход на производство 1 л молока, корм. ед	1,2	0,9	1,2	1,4
Себестоимость 1 л молока, руб.	28,40	21,34	27,40	33,10
Выход Брынзы из молока 1 козы за лактацию, кг	108,6	137,4	103,8	79,3
Выход Шевре из молока 1 козы за лактацию, кг	131,7	168,3	121,4	105,2
Прибыль от реализации молока	23254	36824	24858	17466
от 1 козы за лактацию, руб.				
Рентабельность производства молока, %	57	68	59	50
Прибыль от реализации сыра Брынзы	47558	64859	44654	29979
из молока 1 козы руб.				
Рентабельность производства сыра Брынзы, %	73	79	72	63
Прибыль от реализации сыра Шевре из молока 1козы в год, руб.	41666	58129	37019	29744
Рентабельность производства сыра Шевре, %	70	77	68	63

С точки зрения экономической эффективности, как для производства питьевого молока, так и для выработки сыров обоих видов, наиболее выгодными являются козы-дочери Рэма N-24.

Изучение физико-химических и технологических показателей молока коз зааненской породы в зависимости от происхождения показало, что содержание абсолютных компонентов в молоке опытных животных не было одинаковым. Достоверной разности по всем физико-химическим показателям молока не выявлено, кроме достоверно низкого содержания лактозы в молоке коз дочерей Фэта Q-67 (4,19% при P<0,01).

Белок является одним из основных компонентов молока, который отвечает за качество получаемого сгустка и выход сыра. Так, в молоке дочерей Фэта Q-67 и Крокуса Q-17 было наиболь-

шее, по сравнению с другими опытными группами содержание белка (3,23%), хотя наименьший расход молока (5,2 л) на производство 1 кг сыров обоих видов был у дочерей группы Лиса P-20.

Содержание сухого вещества, жира и белка в сыре Брынза, выработанного из молока коз разного происхождения, было выше, чем содержание аналогичных веществ в сыре Шевре. При органолептической оценке наивысшую оценку получили сыры, произведенные из молока коз – дочерей Рэма N-24.

Таким образом, исследуемое молоко коз разного происхождения, а также выработанные из него сыры различаются по физико-химическим показателям, с чем связан расход молока на выработку 1 кг сыра. Это даёт основание более внимательно и серьёзно подходить к выбору производителя для ремонта стада.

Summary. The article deals with the physicochemical and technological properties of Zaanen goat milk originating from different billy goats.

Key words: protein, lactose, fat content, density, milk acidity, cheese-Brinza, cheese-Chevre.

Шувариков Анатолий Семенович, доктор с.-х. наук, профессор, $P\Gamma AV - MCXA$ имени К.А. Тимирязева. **Бодрова Юлия Николаевна,** аспирантка, $P\Gamma AV - MCXA$ имени К.А. Тимирязева. **Пастух Ольга Николаевна,** кандидат с.-х. наук, доцент, $P\Gamma AV - MCXA$ имени К.А. Тимирязева.

Адрес: г. Москва, ул. Тимирязевская, д. 48, тел.: (499) 976-46-12

ОПЫТ РАЗВЕДЕНИЯ ПОРОДЫ АВАСИ В АЗЕРБАЙДЖАНЕ

М.Г. Балакишиев Азербайджанский НИИ Животноводства

В статье приводятся данные об адаптации овец породы аваси, завезенных из Турции в Азербайджан с целью использования их для повышения молочной продуктивности у местных овец.

Ключевые слова: порода аваси, молочная продуктивность, овечье молоко, аборигенные овцы.

В последнее время в овцеводстве большинства стран мира обращено внимание на увеличение производства продуктов питания – мяса, молока. В

меньшей степени освоена ниша, связанная с молочной продуктивностью овец. Азербайджан в этом отношении не исключение, в республике нет по-

