## ПОЛИМОРФИЗМ ПОДСОЛНЕЧНИКА ПО ПРИЗНАКУ ВЕТВЛЕНИЯ И ЕГО ИСПОЛЬЗОВАНИЕ В СЕЛЕКЦИИ ОТЦОВСКИХ ЛИНИЙ

## В.В. Толмачёв, В.П. Наконечный, Е.В. Ведмедева Институт масличных культур УААН

В статье представлены результаты по изучению набора 20 селекционных и коллекционных линий с разными типами ветвления. Обсуждены возможности их использования в селекции, а также подходы к их корректному описанию. Сделан обзор по наследованию разных типов ветвления по литературным источникам. Описано типы наследования признака ветвления у изученных линий. Показано, что морфологические различия в проявлении ветвления у образцов с апикально-медиальным типом связаны с различной экспрессивностью гена "b<sub>1</sub>".

Генетический контроль, подсолнечник, типы ветвления, фенотипическое варьирование

Линиям восстановителям фертильности пыльцы отводится в селекции особое место. Они должны удовлетворять целому ряду требований: высокой комбинационной способности, высокой пыльцевой продуктивности, хорошей восстановительной способности и иметь устойчивость к ложной мучнистой росе, ржавчине, заразихе и другим патогенам.

В современной селекционной работе по созданию гибридов подсолнечника получили большое распространение в качестве отцовских компонентов линии, обладающие разными типами ветвления. Они имеют преимущества по сравнению с однокорзиночными формами, так как обладают более продолжительным периодом цветения и повышенной пыльцевой продуктивностью. Особое значение в этом случае будут иметь рецессивно наследующиеся типы ветвления. По мнению Hockett F.A., Knowles P.F.[1], большинство имеющихся генов ветвления в культурном подсолнечнике и должны быть рецессивными, вследствие долгого искусственного отбора на однокорзиночные формы.

Классификация ветвления в разных изданиях в целом однотипна [2]. Она базируется на подразделении места ветвления на главном

<sup>©</sup> Толмачёв В.В., Наконечный В.П., Ведмедева Е.В., 2009. ISSN 0582-5075. Селекція і насінництво. 2009. Випуск 97.

стебле (базальное, апикальное, сплошное) и типа боковых побегов (слабые короткие, слабые длинные, сильные). Комбинация этих параметров во всех сочетаниях дает 9 основных типов ветвления.

Putt E.D. [3] был описан тип ветвления с центральной корзинкой, контролируемый рецессивным геном "b", обозначенный позже " $b_1$ ".

Носкеtt F.A., Knowles P.F.[4] было доложено о двух рецессивных генах, контролирующих ветвление. При наличии двух рецессивных генов  $b_2$  и  $b_3$ , (генотип  $b_2b_2b_3b_3$ ) проявляется полное ветвление, а гомозигота по каждому их этих генов — обуславливает только верхушечное ветвление. В работе Skaloud V., Kovacik A.[5] было описано два рецессивных гена  $b_1$  и  $b_2$ , каждый из которых обуславливает сплошное ветвление. Дигомозиготный генотип (b1b1b2b2) также обладает сплошным ветвлением. Из сравнения вышеприведенных работ не понятно, проводилась ли идентификация гена b2.

Кроме того, у Skaloud V., Kovacik A. [6] описаны следующие типы ветвления: ветвление в нижней части стебля, обусловленное одним рецессивным геном "hc"; ветвление верхней части стебля (многокорзинчатость), обусловленное одним рецессивным геном "f"; пучкообразность стебля, контролируемая тремя рецессивными генами "hf"; пальметовидное ветвление, обусловленное тремя рецессивными генами "mhp", проявляется развитием двух нижних боковых побегов; дихотомическое ветвление, обусловленное тремя рецессивными генами "mhd".

N.Nenov, F.Tsvetkova [7] сделали сообщение о независимом наследовании рецессивных генов нижнего, судя по всему пальметовидного, и верхнего ветвления. При этом в дигомозиготе ген нижнего ветвления эпистатирует над геном верхнего ветвления.

Как видно из литературных источников, существует целый ряд рецессивных генов всех трёх типов ветвления (апикального, сплошного и базального), которые могут быть использованы в селекции линий восстановителей фертильности пыльцы.

Материал в исследованиях включал в себя коммерческие селекционные линии восстановители фертильности пыльцы подсолнечника, имеющие различные типы ветвления, новые селекционные линии восстановители фертильности пыльцы с различными типами ветвления и образцы коллекций Всероссийского института растениеводства (ВИР), Всероссийского научно-исследовательского института масличных культур (ВНИИМК), Института масличных культур (ИМК).

В исследованиях было использовано 20 образцов подсолнечника. Эти образцы являются частью из выделенных в коллекциях 60 линий с различными типами ветвления, изучавшихся нами в течение 2001-2008 годов. Разнообразие, охватываемое этими образцами, отражает боль-

шую часть имеющегося генетического полиморфизма по признаку ветвления подсолнечника.

Закладка опытов и фенологические наблюдения проводились по общепринятой методике [8].

Стебель подсолнечника — осевой вегетативный орган, выполняющий две основные функции: проводящую (обеспечивает обмен минеральных и органических веществ) и механическую (обеспечивает наиболее благоприятное расположение листьев и корзинки). На поверхности стебля под листьями, как правило, формируются выступы — проводящие пучки, переходящие в центральную жилку листа. Это придает стеблю определенную угловатость, которая усиливается при благоприятных условиях питания и водообмена растений.

У большинства селекционных сортов и гибридов стебель не ветвится, а в пазухах листьев нередко даже не закладываются почки. Однако отсутствие ветвления, "однокорзиночность" является эволюционно нецелесообразным признаком для подсолнечника как вида Hellianthus annuus в условиях естественного произрастания. Именно ветвление растения, формирование системы побегов второго и более высоких порядков позволяет растению оставить по окончании своего жизненного цикла максимальное количество семян, сформировавшихся в разные календарные сроки, обеспечивая наилучшим образом не получение урожая (что важно в культуре), а сохранение и распространение вида.

При характеристике признака ветвления у образцов и линий подсолнечника использовали формулу Першиной И.М. [9], дифференцирующую типы ветвления по месту образования боковых побегов на главном стебле и мощности боковых побегов. Следует пояснить, что мы рассматриваем термин «апикальное ветвление» и «ветвление в верхней части стебля» в соответствии с более строгой ботанической классификацией, когда апикальное ветвление проявляется в развитии побегов из пазух верхних листьев, начиная от корзинки. Из изученных 20 образцов: 2 обладали апикально-медиальным, 1 медиально-базальным, 12 — медиальным и 5 базальным типами ветвления (табл. 1).

По результатам изучения наследования признака ветвления два образца (APS 42, N355114) имели моногенный доминантный тип наследования.

Образцы, линии с доминантным геном ветвления, естественно, не могут быть использованы в селекционной работе при создании масличных сортов и гибридов подсолнечника. Однако этот, так называемый «дикий» тип ветвления интересен для сравнения морфологических особенностей его носителей с коллекционными образцами и самоопыленными линиями, ветвление которых обусловлено рецессивными генами.

Таблица 1 Различные типы ветвления образцов подсолнечника и их наследование(2005-2008гг)

| Название   | Тип ветвления         | Формула     | Генетический          |
|------------|-----------------------|-------------|-----------------------|
| образца    | тип ветвления         | ветвления   | контроль признака     |
| APS 42     | Апикально-медиальный  | $A_1M_3B_0$ | Один ген, доминантный |
| N355114    | Медиальный            | $A_0M_2B_0$ | Один ген, доминантный |
| In ВИР 369 | Медиальный            | $A_0M_3B_0$ | Один ген, рецессивный |
| 3Л 2554 В  | Медиальный            | $A_0M_2F_0$ | Один ген, рецессивный |
| RHA - 297  | Медиальный            | $A_0M_3B_0$ | Один ген, рецессивный |
| КЛВ-80     | Медиальный            | $A_0M_2B_0$ | Один ген, рецессивный |
| КГ-49      | Медиальный            | $A_0M_2B_0$ | Один ген, рецессивный |
| 3Л-678     | Медиальный            | $A_0M_3B_0$ | Один ген, рецессивный |
| Л-2563     | Медиальный            | $A_0M_3B_0$ | Один ген, рецессивный |
| ИнЗЛ-7034  | Медиальный            | $A_0M_2B_0$ | Один ген, рецессивный |
| K-225      | Медиальный            | $A_0M_3B_0$ | Один ген, рецессивный |
| K-1662     | Апикально- медиальный | $A_1M_2F_0$ | Один ген, рецессивный |
| InK-561-2  | Медиальный            | $A_0M_2F_0$ | Один ген, рецессивный |
| APS 35     | Медиальный            | $A_0M_2B_0$ | Один ген, рецессивный |
| ЛГ 8-4     | Базальный             | $A_0M_0B_3$ | Один ген, рецессивный |
| LD72p3     | Базальный             | $A_0M_0B_3$ | Один ген, рецессивный |
| КГ-13      | Базальный             | $A_0M_0B_3$ | Один ген, рецессивный |
| Z-1064     | Базальный             | $A_0M_0B_2$ | Один ген, рецессивный |
| K-1675     | Базальный             | $A_0M_0E_2$ | Один ген, рецессивный |
| Л-2094-13  | Медиально-базальное   | $A_0M_3B_1$ | Два гена, рецессивные |

Следует отметить, что проявление ветвления у гибридов однокорзиночных линий с образцами дикорастущего H.annuus характеризуется как сплошное с мощным развитием боковых побегов и наличием побегов второго и третьего порядка с цветущими корзинками. Однако, при поддержании таких образцов методом самоопыления или близкородственного скрещивания (что неизбежно при работе с обширными коллекциями) степень проявления ветвления уменьшается, вероятно, в силу неизбежной инбредной депрессии. Возможно, поэтому в коллекциях подсолнечника ветвление у образцов, представленных самоопыленными линиями с доминантными генами, не отличается ни по структуре, ни по степени проявления от ветвления с рецессивной наследственной природой (табл. 2).

Как показали результаты нашей работы по изучению наследования признака ветвления у коллекционных образцов, подавляющее большинство их обладает одним рецессивным геном. Проведенная нами генетическая идентификация свидетельствует об аллельности данных генов гену "b<sub>1</sub>" линий RHA-274, RHA-297.

Таблица 2 Характеристика линий, образцов подсолнечника с различными типами ветвления по основным морфологическим признакам (среднее 2005-2008гг)

|                                                           |               | (0)                     | једнее .             | 2003 2             | 00011)              |                      |                         |                                                        |  |  |
|-----------------------------------------------------------|---------------|-------------------------|----------------------|--------------------|---------------------|----------------------|-------------------------|--------------------------------------------------------|--|--|
| Название                                                  | Высота,<br>см | Число бок ветвей,<br>шт | Число листьев,<br>шт | Длина листа,<br>см | Ширина листа,<br>см | Длина черешка,<br>см | Диаметр корзинки,<br>см | Площадь листовой поверхности растения, см <sup>2</sup> |  |  |
| Апикально-медиальное ветвление (доминантный тип)          |               |                         |                      |                    |                     |                      |                         |                                                        |  |  |
| APS 42                                                    | 121,1         | 15,3                    | 24,5                 | 19,9               | 17,5                | 11,2                 | 11,4                    | 3689                                                   |  |  |
| N355114                                                   | 108,4         | 9,8                     | 20,5                 | 15,4               | 14,6                | 10,3                 | 10,2                    | 2002                                                   |  |  |
| Медиальное ветвление (рецессивный тип)                    |               |                         |                      |                    |                     |                      |                         |                                                        |  |  |
| In ВИР 369                                                | 116,2         | 22,0                    | 26,4                 | 18,0               | 16,9                | 6,9                  | 12,1                    | 3478                                                   |  |  |
| 3Л 2554 В                                                 | 106,4         | 18,1                    | 24,5                 | 16,6               | 14,8                | 8,1                  | 11,5                    | 2682                                                   |  |  |
| RHA - 297                                                 | 125,8         | 19,7                    | 26,6                 | 18,2               | 16,8                | 9,2                  | 10,8                    | 3523                                                   |  |  |
| КЛВ-80                                                    | 121,8         | 21,9                    | 28,4                 | 18,8               | 15,1                | 9,1                  | 12,0                    | 3502                                                   |  |  |
| КГ-49                                                     | 109,9         | 16,0                    | 24,1                 | 12,4               | 13,9                | 2,2                  | 9,6                     | 1927                                                   |  |  |
| 3Л-678                                                    | 117,7         | 17,0                    | 25,0                 | 16,6               | 13,1                | 9,3                  | 11,3                    | 2352                                                   |  |  |
| Л-2563                                                    | 121,1         | 18,7                    | 26,4                 | 17,8               | 15,0                | 9,8                  | 12,1                    | 3047                                                   |  |  |
| ИнЗЛ-7034                                                 | 107,5         | 13,9                    | 21,4                 | 19,5               | 18,15               | 8,7                  | 11,8                    | 3281                                                   |  |  |
| K-225                                                     | 111,3         | 19,5                    | 23,2                 | 18,4               | 17,5                | 8,5                  | 11,6                    | 3235                                                   |  |  |
| InK-1662                                                  | 85,1          | 13,7                    | 22,4                 | 11,8               | 12,5                | 5,2                  | 10,9                    | 1528                                                   |  |  |
| InK-561-2                                                 | 105,4         | 11,5                    | 23,7                 | 13,5               | 13,5                | 7,0                  | 9,6                     | 1911                                                   |  |  |
| APS 35                                                    | 97,0          | 7,9                     | 15,9                 | 18,6               | 18,2                | 6,9                  | 12,6                    | 2324                                                   |  |  |
| Базальное ветвление (рецессивный тип)                     |               |                         |                      |                    |                     |                      |                         |                                                        |  |  |
| ЛГ 8-4                                                    | 98,5          | 4,7                     | 18,5                 | 19,1               | 17,3                | 11,3                 | 14,0                    | 2647                                                   |  |  |
| LD72p3                                                    | 143,4         | 6,0                     | 28,0                 | 21,1               | 18,9                | 11,0                 | 14,0                    | 4841                                                   |  |  |
| Z-1064                                                    | 79,1          | 1,5                     | 21,1                 | 21,0               | 19,0                | 7,8                  | 17,0                    | 3657                                                   |  |  |
| K-1675                                                    | 117,2         | 1,6                     | 19,5                 | 20,6               | 18,3                | 9,3                  | 15,5                    | 3177                                                   |  |  |
| КГ-13                                                     | 122,4         |                         | 23,65                | 17,3               | 18,1                | 8,2                  | 13,85                   | 3448                                                   |  |  |
| Медиально-базальное ветвление (рецессивный тип, два гена) |               |                         |                      |                    |                     |                      |                         |                                                        |  |  |
| Л-2094-13                                                 | 80,7          | 15,3                    | 20,7                 | 15,6               | 13,6                | 9,8                  | 13,2                    | 1907                                                   |  |  |
| $HCP_{0,05}$                                              | 7,2           | 1,8                     | 2,1                  | 1,5                | 1,2                 | 0,9                  | 1,3                     | 288                                                    |  |  |

Этот же ген присутствует в изученных селекционных линиях КЛВ-80, ЗЛ-678, ЗЛ-2554, ЗЛ-7034, X-711 и, очевидно, в подавляющем большинстве селекционных линий восстановителей фертильности пыльцы, исходя из генеалогической преемственности в создании этих

линий: исходным материалом для них явились коммерческие гибриды с геном " $b_1$ " в отцовских формах.

В связи с этим интересен размах фенотипической изменчивости ветвления как результат проявления гена "b<sub>1</sub>" у разных генотипов, т.е. различных линий подсолнечника, обладающих идентичным геном ветвления.

Так как боковые побеги развиваются из почки в пазухе листа, то отношение числа боковых побегов и числа листьев на стебле может количественно охарактеризовать побегообразующую способность растения. Это соотношение зависит, во-первых, от числа сформировавшихся пазушных почек, а во-вторых, от числа нормально развивающихся почек. Оба эти процесса определяются гормональным балансом растения и модифицируются условиями произрастания (и в первую очередь густотой стояния растений).

К числу линий с высокой побегообразующей способностью можно отнести K-225 (отношение числа побегов к числу листьев на стебле -0.84, KЛВ-80-0.77, RHA-297-0.74; со средней ЗЛ-678-0.68, KГ-49-0.66, InK-1662-0.61; со слабой APS-35-0.50, InK-561-2-0.48.

К альтернативному типу ветвления как по проявлению, так и по генетическому контролю относится базальное (пальметовидное) ветвление. Морфологической особенностью этого типа ветвления является образование нескольких побегов (от 1 до 5-6) из пазух нижних (иногда семядольных) листьев, причем чаще со слаборазвитыми или недоразвитыми корзинками. По интенсивности проявления этот тип сильно уступает вышеописанным апикальному, апикально-медиальному и тем более сплошному. Поэтому селекционная пригодность базального типа ветвления для создания линий восстановителей фертильности невелика. Тем не менее, ряд линий с базальным типом ветвления, такие как К-203, способны формировать почти на уровне центральной корзинки два побега с корзинками до 10 см в диаметре, зацветающими на 2-5 дней позже центральной и увеличивающими тем самым срок цветения. Линии с таким типом ветвления ограниченно использовались в качестве отцовских в 80 годы XX века в румынском селекцентре Fundula (под Бухарестом).

Из изученных нами линий с базальным типом ветвления максимальный показатель числа боковых побегов не превысил 7,2 за четыре года изучения, а среднее значение этого показателя у большинства линий на уровне 1,5-6,0, что существенно ограничивает использование данного типа ветвления в селекции линий восстановителей фертильности.

Одним из наиболее значимых факторов модификационной изменчивости признака ветвления у подсолнечника является густота стояния растений. Возникающее при загущении обострение конку-

рентных отношений между растениями за свет и пространство (особенно при переходе от одиночного к гнездовому размещению), а также за дефицит питательных веществ и влаги с одной стороны, ухудшают условия роста всех растений, с другой — вызывают увеличение пределов варьирования признаков за счет дифференциации растений по конкурентоспособности. Растения большинства ветвистых линий уже при переходе от варианта с площадью питания 70х70см к варианту 70х35см резко сокращают число боковых побегов. К примеру, число боковых побегов у линии RHA-274 сократилось с 13.4 до 7.7, у линии Л-2544 с 8 до 4,3, линии Л-2094-13 с 12,8 до 6,7. В варианте с площадью питания 70х14 см отдельные линии почти прекращают образование боковых побегов. При этом размеры главного побега изменяются относительно незначительно.

**Выводы.** 1. Полиморфизм коллекции культурного подсолнечника при морфологическом анализе можно разделить на источники апикально-медиального, медиального и базального ветвления с различной степенью проявления.

- 2. Сравнение образцов подсолнечника по признаку ветвления целесообразно осуществлять, используя формулу ветвления ( $A_{0\text{--}3}M_{0\text{--}}$ 3 $F_{0\text{--}3}$ ) и отношение числа побегов к числу листьев на главном стебле.
- 3. По результатам изучения генетического контроля ветвления у 20 образцов подсолнечника установлено, что два образца имеют доминантный ген апикально-медиального ветвления, 5 образцов рецессивный ген базального ветвления, 12 образцов рецессивный ген апикально-медиального ветвления, 1 образец два рецессивных гена медиального и базального ветвления.
- 4. Показано, что морфологические различия в проявлении ветвления у образцов с апикально-медиальным типом связаны с различной экспрессивностью гена "b<sub>1</sub>".
- 5. В дальнейшем представляется актуальной идентификация генов базального ветвления подсолнечника. Совмещение в одном генотипе апикального и базального ветвления позволит получить новые типы ветвления, перспективные для использования в практической селекции подсолнечника.

## Список использованных источников

- 1. *Hockett F. A.* Intheritance of sunflower Helianthus annuus L. / F. A. Hockett, P. F. Knowles // Crop Sci. 1970. № 10. P. 432-436.
- 2. Широкий унифицированный классификатор СЭВ рода Helianthus L. ; состав. А. Анашенко, В. Корнейчук, А. Врынчану, П. Варга. Л. : ВИР, 1987. 25 с.

- 3. *Putt E. D.* Recessive branching in sunflowers / E. D. Putt // Crop Sci. 1964. № 4. P. 444-445.
- 4. *Hockett F. A.* Intheritance of sunflower Helianthus annuus L. / F. A. Hockett, P. F. Knowles //Crop Sci. 1970. № 10. P. 432-436. .
- Skaloud V.. Interitance of some heteromorphic characters in sunflower (Helianthus annuus) / V. Skaloud, A. Kovacik // Proceedings of the 6-th International sunflower conference. – Bucharest. Romania, 1974. – P. 291-295.
- 6. Kovacik A. Collction of sunflower marcer genes available for genetic studies / A. Kovacik, V. Skaloud // Helia. 1980. N. 3. P. 296-299
- Nenov N. Study of incheritance of two different types of branching in sunflower (H.annuus L.) / N. Nenov, F. Tsvetkova // Helia. –1994. – V. 7, Nr. 21. – P.19-22.
- 8. Доспехов Б. А. Методика полевого опыта / Б. А. Доспехов. М. : Колос, 1965. 224 с.
- 9. *Першина И. М.* Генетическая база селекции декоративного подсолнечника: дис. ... канд. с/х наук / Першина И. М. Запорожье, 2000. 148 с.

У статті представлені результати з вивчення 20 селекційних і колекційних ліній з різними типами галуження. Обговорені можливості їх використання в селекції, а також особливості вивчення і опису. Зроблений огляд по успадкуванню різних типів галуження за публікаціями. Описано типи успадкування ознаки галуження в лініях, що вивчаються. Показано, що морфологічні відмінності в прояві галуження у зразків з апікально-медіальним типом пов'язані з різною експресивністю гена "b<sub>1</sub>".

The article presents the results on study of 20 breeding and collections lines with the different types of branching. Possibilities of their use in breeding are discussed, as well as peculiarities of study and description. A review is done on the known inheritance of different types of branching based on the literature. The types of inheritance of the trait of branching are described in the studied lines. It was demonstrated that morphological distinctions in the manifestation of branching in the samples with an apical-median type were bound with the different expressibility of "b<sub>1</sub>" gene.