УДК: 633.34.581.1.032.3

© 2008

- В. И. Сичкарь, доктор биологических наук
- О. И. Ганжело
- Г. Д. Лавров, кандидат биологических наук

Селекционно-генетический институт сортоизучения — Национальный центр семеноведения

ПУТИ ПОВЫШЕНИЯ УРОЖАЙНОСТИ СОИ В УСЛОВИЯХ НЕДОСТАТОЧНОГО УВЛАЖНЕНИЯ

Описаны источники устойчивости к засухе из мировой коллекции сои. Установлено, что скороспелые сорта уступают по уровню средней продуктивности за годы изучения среднеспелым на 10%, но отличаются повышенной засухоустойчивостью.

Показаны возможности повышения урожайности сортов сои в условиях недостаточного увлажнения путем выращивания более адан тивных сортов, относящихся к разным группам спелости при соблюдении правильных агротехнических мероприятий.

Высокое почвенное плодородие земель юга Украины, а также тепловые ресурсы и выгодное географическое положение, в целом, благоприятны для выращивания сои. Однако, урожай сои в степной зоне крайне нестабилен. Снижение продуктивности происходит по причине недостаточной влагообеспеченности. Для получения стабильных урожаев сое за период вегетации требуется от 350 до 400 мм осадков, а на юге Одесской области по среднемноголетним данным их выпадает 231,5 мм, а в ряде случаев и того меньше.

Большинство сельскохозяйственных культур реагируют на недостаток влаги уменьшением транспирации за счет увядания и опадания листьев, поскольку плодоносящие органы обладают повышенной конкурентной способностью по отношению к воде и питательным веществам [1]. У сои в начальный период роста сильная засуха вызывает пожелтение и ги-

бель листьев, способных регенерироваться при выпадении осадков, поскольку в пазухах листьев находятся молодые почки [2].

Кратковременный недостаток влаги в периоды цветения, образования бобов и их налива (а для юга Украины это III декада июня — I декада августа) приводит к опадению бутонов, бобов, завязи, уменьшению массы семян и снижению урожая на 48-87% [3].

За последние 5 лет наиболее благоприятными для роста и развития сои были 2004 и 2005 годы. Температурные показатели соответствовали норме, а суммарное количество осадков превысило среднее многолетнее ее количество на 111,2 и 107,4 мм соответственно (табл. 1, 2). Выпадение осадков в 2004 году было относительно равномерным, в 2006 году небольшой недостаток влаги был в июне, в июле-августе растения развивались в условиях достаточного увлажнения.

1. Среднемесячные температуры воздуха за период вегетации сои (°C), (2003-2007 гг.)

Гол				Месяц		
Год	апрель	май	июнь	июль	август	сентябрь
2003	7,5	18,4	20,5	21,6	22,8	16,4
2004	9,8	14,2	19,0	21,4	21,8	17,3
2005	9,5	16,9	19,3	23,1	22,9	19,4
2006	10,1	15,1	20,1	17,7	22,9	17,5
2007	10,3	17,8	23,1	24,6	24,5	22,6
T, °C,	10,1	15,3	19,6	22,5	21,4	18,9
ср.многолет.						

Погодные условия 2003, 2005, 2007 годов отличались периодическим повышением температуры воздуха и скудным, неравномерным выпадением осадков, особенно в период цветения — начала созревания сои. Суммарное количество осадков в эти годы было меньше среднемноголетних значений на 47,3; 78,4 и 196 мм соответственно.

Особенно жесткую засуху наблюдали в 2007 году. За летние месяцы выпало всего 57,6 мм осадков, большая часть которых имела место в конце августа, а средняя температура июня превысила среднемноголетнюю на 3.6° С, июля на 2.1° С, а в отдельные дни температура воздуха достигала $45-47^{\circ}$ С.

Довольно частыми на юге Украины становятся аномально высокие температуры воздуха в отдельные периоды вегетации сои, приводящие к резкому иссушению почвы и низкой влагообеспеченности посевов. По

данным метеонаблюдений за последние 16 лет, лишь 6 лет были относительно влажными.

2. Количество осадков, выпавших за период вегетации сои
(мм), (2003-2007 гг.)

					Месяц		
Год	апрель	май	июнь	июль	август	сентябрь	всего за период вегетации
2003	37,0	4,7	40,1	42,4	13,7	46,3	184,2
2004	32,9	85,2	59,4	110,9	37,6	17,7	343,7
2005	0	38,0	30,0	9,8	75,3	0	153,1
2006	18,7	59,4	42,6	95,5	94,9	27,8	338,9
2007	35,8	0,8	17,0	1,5	39,1	31,2	125,4
Ср. многолет.	24,9	37,0	57,0	46,0	42,0	24,6	231,5

Изменение климата в сторону повышения температурного режима становится неоспоримым фактом, а работа по созданию сортов с высокой засухо- и термоустойчивостью — чрезвычайно актуальной. Для решения этой задачи необходимо более полное изучение признака засухоустойчивости, проведение селекционной работы по выведению сортов аридного типа, использование агрономических приемов для сохранения и рационального использования растениями влаги.

Анализ литературы по засухоустойчивости сои показал, что у одних сортов она обусловлена развитием более мощной корневой системы, у других — относительной скороспелостью, у третьих — генетической способностью экономно расходовать влагу в процессе роста и развития. При этом в процессе онтогенеза изменяются характер обмена веществ и химические свойства протоплазмы [4].

Важными косвенными признаками устойчивости сои к засухе являются: повышение уровня концентрации клеточного сока и осмотического давления, способность в условиях водного стресса образовывать достаточное количество клубеньков и сохранять высокую интенсивность азотфиксации и фотосинтеза [1], замедление дыхания, повышение вязкости протоплазмы, низкая проницаемость кутикулы поддерживающая тургор листьев, быстрое развитие корневой системы [5], увеличение свободного пролина в листьях сои [6], наличие некрупных с уплотненной опушенностью, заостренных листьев, отходящих от стебля и ветвей под небольшим углом, повышенная способность к саморегуляции величины устьиц в зависимости от объема поступающей в листья влаги [7]. Контроль за таким сложным признаком как засухоустойчивость осуществляется через физио-

логические, биохимические и морфоанатомические реакции, которые в целом обусловлены генотипом растения.

Наиболее интегральным показателем засухоустойчивости является высокая продуктивность сортов, которая определяется не одним признаком или свойством, а всей генетической системой растений [8]. В засушливых условиях наиболее высокий урожай сои формируется при оптимальном объединении отдельных элементов продуктивности и хозяйственно ценных признаков, среди которых наибольшее значение имеют надземная масса растений, количество бобов и семян на растении [9], а также небольшое снижение массы 1000 семян в засушливые годы [4].

Выявление и отбор устойчивых к засухе генотипов в Селекционногенетическом институте проводится на всех этапах селекционного пропесса.

Ценная информация по засухоустойчивости сортов и образцов сои была получена в 2007 году при остром дефиците влаги и высоких температурах почвы и приземного воздуха. Так, оценка сортообразцов мировой коллекции сои позволила установить, что из 526 форм 14 превысили среднюю урожайность стандарта Аркадии одесской. Выделившиеся сортообразцы: Л-70-74 (Канада), Semu 0789, SS-14 Chuj, Sne Nung, С 14/58, Varbrunnea (Германия), Faur, Olwkova Prebedovska, №25 Franc Colonial, U-07-90, Rondniska black, Арасhе (Чехия), Hei-toi-black (Китай), Л-12 (Нидерланды) можно использовать в дальнейшей селекционной работе в качестве источников устойчивости к засухе.

Проанализировав морфоанатомические признаки сортообразцов мировой коллекции сои по методике П. Ф. Рокицкого [10], было установлено, что среди засухоустойчивых генотипов достоверное большинство составляют белоцветковые формы (16,5% от всех изученных белоцветковых сортов), из фиолетовоцветковых сортов устойчивыми были лишь 9,7%.

Достоверными оказались также различия по устойчивости к засухе у форм с различной окраской семян. Имеющие черную кожуру семян генотипы были более выносливыми к дефициту влаги, чем сорта с желтой окраской (20,4 и 10,3% соответственно).

Несущественными оказались различия по урожайности среди сортов с различным опушением, формами листа и типом роста.

Так, национальный стандарт Украины среди скороспелых сортов сорт сои Аркадия одесская имеет законченный тип роста. Он хорошо адаптирован к условиям степной зоны Украины, способен давать высокий урожай во влажные годы и незначительно его снижать в засушливые, при этом хорошо ветвится и имеет повышенную надземную массу (табл. 3).

3. Характеристика сортов сои по урожайности и массе 1000 семян (МТС) (2003-2007 гг.)

		Dorotoilla			Урожа	Урожайность, т/га	т/га		S S	CEM	
Сорт	Происхо- ждение	регетаци- онный период	2003	2004	2005	2006	2007	Средн. за 2003-2007	MTC, r, 2003-2007	., r, 2007	OHIXKEHIZE MTF ¹ %
Аркадия, ст.	Украина	119	1,04	2,48	06'0	2,00	0,35	1,41	139	115	17,3
Аметист	Украина	86	-		0,84	1,65	0,40		140	128	8,6
л-2	Россия	86	-	2,13	69'0	1,20	0,43*	-	127	ОП	13,4
Селекта	Россия	103	0,89	2,36	0,79	1,42	0,44*	1,18	176	125	28,9
Васильковская	Украина	106	1,07	2,83	0,55	1,64	0,41	1,30	164	120	26,8
Степовичка 4	Украина	106	-	2,56	0,93	1,71	0,42	-	151	114	24,5
Романтика	Украина	107	96'0	2,27	0,84	1,84	0,40	1,27	150	112	25,3
Киевская 98	Украина	107	-	2,29	09'0	1,56	0,39	-	138	108	21,7
Аполлон	Украина	109	1,02	2,23	1,02	1,67	0,38	1,26	139	115	17,3
фаэтон	Украина	112	0,84	2,16	0,83	2,03	0,41	1,25	121	105	132
Чернобурая	Украина	114	99'0	1,94	0,65	1,92	0,41	1,10	120	88	26,7
Одесская 150	Украина	121	1,05	1,94	06'0	1,94	0,25	1,22	137	115	16,1
Эльдорадо	Украина	121	-	2,07	1,11	2,29*	0,23	-	136	105	22,8
Эванс	США	124	1,22	2,60	0,77	2,33*	0,16	1,38	162	105	35,2
з Ламберт	США	125	0,44	2,16	0,71	2,13	0,15	1,12	153	ОП	28,1
Паркер	США	125	1,16	2,60	1,28*	2,40*	0,13	1,51	164	ОП	32,9
Донька	Украина	128	1,09	2,18	1,41*	2,11	0,19	1,40	135	ПО	18,5
Маркус	США	129	0,98	2,43	1,44*	2,51*	0,18	1,51	174	125	30,5
HCP _{0.05}			0,18	0,36	0,21	0,21	0,07				

В то же время многие индетерминантные сорта среднеспелой группы – Эванс, Ламберт, Паркер, Хардин 91, Маркус во влажные годы формируют урожай семян на уровне и выше стандарта за счет более растянутого периода роста и образования большого количества бобов и семян.

В питомнике экологического испытания сои (площадь делянки — 18 м², повторность 5-ти кратная, стандарт — Аркадия одесская) ежегодно в засушливых условиях юга Украины изучают адаптивные свойства более 50 сортов отечественной и зарубежной селекции, различающихся по вегетационному периоду и биологическим особенностям.

Исследования, проведенные в 2003-2007 гг. по изучению продуктивности сортов сои, принадлежащих к разным группам спелости, показали нестабильный уровень урожая по годам наблюдений и неоднородную реакцию сортов на влагообеспеченность посевов (табл. 3).

При достаточном количестве осадков за вегетацию и относительно равномерном распределении по месяцам, как это было в 2004 году, практически все сорта показали высокую продуктивность (от 1,94 до 2,83 т/га при урожайности стандарта 2,48 т/га).

Неравномерное распределение осадков привело к снижению урожая. Так, во влажном 2006 и в засушливом 2005 году недостаток влаги в первой половине лета не дал возможности скороспелым сортам реализовать свой потенциал продуктивности. Среднеспелые сорта после обильных дождей в июле-августе оказались в условиях достаточного увлажнения, что позволило им сформировать более высокий урожай семян. Достоверное превышение над стандартом в 2006 году отмечено у среднеспелых сортов Эльдорадо, Эванс, Паркер, Маркус. Высокопродуктивными в 2005 году оказались Паркер, Донька, Маркус и Эльдорадо.

Сильнейшая засуха 2007 года с частыми суховеями, аномально высокими температурами в отдельные дни, при минимальных почвенных запасах влаги и суммарном количестве осадков за лето (57,6 мм), создала сильный естественный фон для выявления и отбора устойчивых к засухе генотипов сои. Растения, попав в стрессовые условия, резко снизили продуктивность и массу 1000 семян. Чрезвычайно низкий урожай был у среднеспелых сортов. Лучшие американские сорта Эванс, Паркер, Хадин 91, Маркус снизили продуктивность до 0,13-0,15 т/га. В то же время скороспелые сорта Аметист, Васильковская, Степовичка 4, Романтика, Киевская 98, Апполон, Фаэтон, Чернобурая, Одесская 150 дали урожай на уровне стандарта 0,35-0,41 т/га. Наиболее засухоустойчивыми сортами оказались российские сорта Селекта и Л-2.

Из-за недостатка влаги в 2007 году большинство сортов не смогли сформировать полновесные, выполненные семена. Сильное снижение массы 1000 семян отмечено у среднеспелых американских сортов Ламберт (28,1%), Маркус (30,5%), Хардин 91 (34,6%), а также у скороспелых Васильковская (26,8%) и Селекта (28,9%) (табл. 3). Все вышеперечисленные сорта относятся к группе средне- и крупносемянных. У мелкосемянных сортов среднеспелой группы Одесская 150, Эльдорадо, Донька снижение массы 1000 семян было меньшим (от 16,1 до 22,8%). В скороспелой группе наименьшее снижение (13,4%), Апполон (17,3%) и Аркадия одесская (17,3%).

Средняя урожайность стандарта Аркадии одесской за 2003-2007 гг. составила 1,41 т/га. Немногие из изученных в экологическом испытании сортов сои смогли превысить этот показатель. Это удалось лишь среднеспелым сортам американской селекции Паркер и Маркус, давшим в среднем за 5 лет изучения 1,51 т/га.

Как видно из полученных данных, в достижении высокого урожая сои главная роль принадлежит сорту. Для получения стабильных урожаев в производстве необходимо выращивать лучшие сорта различных групп спелости, включая засухоустойчивые скороспелые: Л-2, Степовичку 4, Васильковскую, Аркадию одесскую и высокоурожайные среднеспелые – Маркус, Паркер, Эванс, Эльдорадо, Доньку.

Важнейшим условием получения высоких программированных урожаев сои является соблюдение прогрессивной технологии, проведение агромероприятий, направленных на накопление и сохранение влагозапасов в почве. Это достигается правильным чередованием культур в севообороте и системой основной обработки почвы, а также продуктивным использованием дождевой влаги в летний период.

Как зернобобовая азотфиксирующая культура соя является отличным предшественником для многих сельскохозяйственных культур, кроме подсолнечника, рапса и других бобовых культур, с которыми она имеет общих возбудителей опасных заболеваний. В то же время лучшими предшественниками сои являются рано убираемые озимая пшеница и яровые колосовые культуры, а также кукуруза на силос и некоторые овощные культуры [4, 11]. Ранняя их уборка позволяет своевременно готовить почву к влагонакопительным мероприятиям и вносить страховые гербициды.

Большое значение в рациональном использовании осадков играет срок и способ сева. Выбор наиболее продуктивного срока сева решает проблему повышения урожайности семян сои на 10-35% [12]. По нашим многолетним наблюдениям в суходольных условиях Украины предпочти-

тельнее проводить ранний сев в третьей декаде апреля, когда верхний слой почвы прогреется до 10-12°C [13]. На орошаемых землях превалируют средние сроки сева [14]. Преимущество ранних сроков сева заключается в рациональном использовании зимних почвенных запасов влаги, что способствует появлению дружных всходов. Более поздние сроки сева возможны только в случае выпадения майских осадков. Сев сои осуществляется широкорядным, ленточным и сплошным способами. Способы сева и нормы высева зависят от целей возделывания, сорта и условий выращивания.

На загущенных посевах сои с густотой стояния выше 500 тыс. раст./ га и узкорядных с шириной междурядий 15 см, между растениями происходит более сильная конкуренция за воду и значительное количество влаги уходит на транспирационные процессы. При широкорядном способе сева с междурядьями 60 и 70 см почвенные запасы влаги теряются в основном на физическое испарение с поверхности почвы.

Для засушливой зоны Украины более влагосберегающим и продуктивным является широкорядный посев с междурядьями 45 см или двухстрочный при расстоянии между лентами 60-90 и внутри лент 15-20 см при густоте 450-500 тыс. всхожих семян на 1 га [15].

Для лучшего накопления влаги в почве и сокращения ее потерь важное значение имеет состояние пахотного слоя. Осенняя обработка почвы создает условия для лучшего впитывания и фильтрации влаги. Это достигается проведением 2-3-х лущений и зяблевой вспашкой на глубину 28-30 см [4].

Лущение почвы проводится после уборки зерновых предшественников с целью создания верхнего мульчирующего слоя, который защищает почву от влагопотерь. Глубокая зяблевая вспашка придает почве структурность и разрыхленность, что способствует накоплению почвенной влаги в осенне-зимний период и уничтожению сорной растительности. После зяблевой вспашки повышается влажность пахотного слоя, запасы продуктивной влаги в метровом слое больше на 140-210 т/га, чем на необработанной почве [16].

Агротехнические мероприятия в весенне-летний период в степной зоне Украины должны быть направлены на сохранение и уменьшение испарения с поверхности почвы. Весенняя подготовка почвы состоит из ранневесеннего боронования, предпосевной культивации с одновременным внесением почвенных гербицидов. В летний период важны поверхностные обработки почвы на небольшую глубину, которые улучшают аэрацию и водный режим почвы и поддерживают верхний слой почвы в

мелкокомковатом состоянии, что важно для лучшего впитывания осадков и уменьшения испарения.

Поддержание посевов сои в чистом от сорняков состоянии сберегает почвенную влагу. В первые 40-80 дней вегетации соя растет медленно и сильно угнетается на засоренных посевах. Коэффициент водопотребления сои при наличии большого количества сорняков возрастает в 3,6-5,7 раза. Кроме того, засорение оказывает большое влияние на вынос азота из почвы. На чистых от сорняков полях он составляет 65-82 кг/га, а на сильно засоренных -168-177 кг/га [15].

Установлено, что в засушливые годы резко увеличивается численность популяции основного вредителя сои на юге Украины акациевой огневки (*Etiella zenckenella* Tr.). Максимально повреждение семян сои гусеницами этого вредителя наблюдается в августе-сентябре и достигает 50-60% [14]. Плотность популяции и скорость заселения посевов сои зависит не только от погодных условий, но и от произрастающих рядом культур. На засоренных участках численность вредителя в 1,5-2 раза выше, чем на чистых от сорняков посевах [17].

Поэтому для получения приемлемого урожая необходимо проводить химические обработки против сорняков и вредителей, руководствуясь экономическими порогами вредоносности.

Недостаточное количество влаги на юге Украины можно компенсировать с помощью гидромелиоративных мероприятий. Орошение сои при соблюдении всех элементов технологии дает высокий экономический эффект, повышая урожайность в 1,6-2 раза. К сожалению, из 200 тыс. га орошаемых земель в 1991 году в Одесской области в настоящее время осталось только 20 тыс. га.

Выводы. В результате исследований были установлены различия в уровне продуктивности сортов по группам спелости в зависимости от влагообеспеченности посевов.

Среднеспелая группа сортов превалирует по урожайности над скороспелыми во влажные годы; в засушливые — при выпадении осадков во второй половине лета и в среднем за 5 лет изучения. Лучшими из среднеспелой группы являются сорта Паркер и Маркус.

На фоне сильнейшей засухи 2007 года среднеспелые сорта уступили по продуктивности группе скороспелых сортов. Достоверно превысили урожай российские сорта Селекта и Л-2. В этом году сильное снижение массы 1000 семян отмечено у средне- и крупносемянных сортов в обеих группах спелости. В результате изучения мировой коллекции сои были

выявлены источники засухоустойчивости, среди которых большинство составляли белоцветковые и с черной кожурой семян формы.

Показаны возможности повышения урожайности сортов сои в условиях недостаточного увлажнения путем выращивания более адаптированных сортов, относящихся к разным группам спелости, и правильного соблюдения агротехнических мероприятий.

Библиографический список

- 1. Васильева T.A. Некоторые характеристики идеотипа растений сои для условий недостаточного увлажнения // Научн.-техн. бюл. ВНИИМК. Краснодар. 1996. Вып. 117. С. 73-77.
- 2. *Лещенко А.К.* Культура сои на Украине. Киев: Госсельхозиздат УССР. 1962. 325 с.
 - 3. Лещенко А.К. Культура сон. Киев: Наукова думка, 1978. 236 с.
- 4. Лещенко А.К., Сичкаръ В.К, Михайлов В.Г., Маръюшкин В.Ф. Соя. Киев: Наукова думка, 1987. 255 с.
- 5. *Курлович Б.С., Репьев С.И.* Генофонд и селекция зернобобовых культур (люпин, вика, соя, фасоль) // Теоретические основы селекции. С.-П.: ВИР, 1995. T. 3. 432 с.
- 6. Сичкаръ В.И. Состояние и перспективы селекции зернобобовых культур // Сб. научн. трудов СГИ. Одесса. 2002. Вып. 3 (43). С. 92-103.
- 7. *Баранов В.Ф.* Агромероприятия по повышению засухоустойчивости ценозов сои // Научн.-техн. бюл. ВНИИМК. Краснодар. 2002. Вып. 126. С. 65-69.
- 8. Орлюк А.П., Гончарова К.В. Проблема поєднання високої продуктивності та екологічної стійкості сортів озимої пшениці // Зб. наук, праць «Фактори експериментальної еволюції організмів». К.: Аграрна наука, 2003. С. 180-187.
- 9. Ciикар B.I. Стан і перспективи селекції сої в Україні // 36. наук., праць ЛНАУ. Луганськ. 2002. № 20(32). С. 7-14.
- 10. Рокицкий $\Pi.\Phi$. Биологическая статистика. Минск: Вышейшая школа. 1973. 319 с.
- 11. Кондратьев Е.К., Коробко В.А. Возделывание сои в Молдавии. Кишинев, 1973. 112 с.
- 12. *Уго Того Корреа*. Оптимизация сроков посева различных по продолжительности вегетационного периода сортов сои // Масличные культуры / Научн.-техн. бюл. ВНИИМК. Краснодар. 2007. Вып. С. 51-65.

- 13. Сичкаръ В.К., Шерстобитов В.В. Современные методы возделывания и переработки сои для увеличения производства растительного белка / Метод. рекомендации СГИ-НЦНС. Одесса, 2006. 69 с.
- 14. Заверюхин В.И. Возделывание сои на орошаемых землях. М.: Колос, 1981.-157 с.
- 15. Cuчкаръ B.U. Соя. Новые сорта и прогрессивная технология возделывания. Одесса. 2003.-45 с.
- $16.\ Баранов\ B.\Phi.$ Агрономические аспекты повышения засухоустойчивости ценозов сои // Повышение продуктивности сои. Краснодар. 2000. $C.\ 71-76.$
- 17. *Бушнева Н.А.* Динамика численности гусениц хлопковой совки и акациевой огневки на сое в Краснодарском крае // Актуальные вопросы селекции, технологии и переработки масличных культур. Краснодар. 2005. С. 127-128.